Complex Geometry Exercises

Week 11

Exercise 1. Prove that the standard identity

$$d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y])$$

extends to vector-valued 1-forms ϕ :

$$d\phi(X,Y) = [X, \phi(Y)] - [Y, \phi(X)] - \phi([X, Y]).$$

Exercise 2. Consider $H_{\lambda} = \mathbb{C}^n \setminus \{0\}/\langle \lambda \rangle$ the Hopf surface, with $\lambda \in \mathbb{C}^*$, $|\lambda| < 1$, for $n \geq 2$.

- (i) Show that $f \in \operatorname{Aut}(H_{\lambda})$ extends to a biholomorphism $\widetilde{f} : \mathbb{C}^n \to \mathbb{C}^n$ with $\widetilde{f}(0) = 0$.
- (ii) Show that $\widetilde{f}(\lambda z) = \lambda \widetilde{f}(z)$ (as opposed to $\lambda \widetilde{f}(\lambda z) = \widetilde{f}(z)$).
- (iii) Prove that $\partial \widetilde{f}(\lambda^n z) = \partial \widetilde{f}(z)$ for all $n \in \mathbb{Z}$, so $\widetilde{f} \in GL(n, \mathbb{C})$.
- (iv) Compute $\operatorname{Aut}(H_{\lambda})$.

Exercise 3. Let X be a Kähler manifold with $c_1(K_X) < 0$. Prove that $H^2(X, \tau_X) = 0$.

Exercise 4. Consider a flat torus $\mathbb{T}^n = \mathbb{C}^n/\Gamma$.

- (i) Find an explicit basis of $\mathcal{H}^{p,q}(\mathbb{T}^n)$. Show that $h^{p,q} = \binom{n}{p}\binom{n}{q}$
- (ii) Compute the virtual dimension of complex strucutres $\mathcal{M}_{\mathbb{T}^n}$.
- (iii) Show that the obstruction map $H^1(\mathbb{T}^n, \tau_{\mathbb{T}^n}) \xrightarrow{\Phi} H^2(\mathbb{T}^n, \tau_{\mathbb{T}^n})$ vanishes.
- (iv) Study how the group $\operatorname{Aut}^0(\mathbb{T}^n)$ acts on $H^1(\mathbb{T}^n, \tau_{\mathbb{T}^n})$.
- (v) Compute the dimension of $\mathcal{M}^0_{\mathbb{T}^n} := \Psi^{-1}(0)/\operatorname{Aut}^0(\mathbb{T}^n)$.

(continues on the back)

Exercise 5 (Moduli space of complex tori).

(i) Prove that a complex torus of dimension n is determined by a map $\mathbb{Z}^{2n} \to \mathbb{C}^n \cong \mathbb{R}^{2n}$, and thus, can be identified with an element of $GL(2n,\mathbb{R})$.

So there is a surjective map $GL(2n, \mathbb{R}) \to \mathcal{M}_{\mathbb{T}^n}$.

- (ii) Prove the actions of $GL(n,\mathbb{C})$ and $GL(2n,\mathbb{Z})$ on $GL(2n,\mathbb{R})$ induce the trivial action on $\mathcal{M}_{\mathbb{T}^n}$.
- (iii) Conclude that $GL(n,\mathbb{C}) \setminus GL(2n,\mathbb{R})$ is a "covering" space of $\mathcal{M}_{\mathbb{T}^n}$.
- (iv) Prove that $\mathcal{M}_{\mathbb{T}^n}$ is isomorphic to the bi-quotient

$$GL(n, \mathbb{C}) \setminus GL(2n, \mathbb{R})/GL(2n, \mathbb{Z})$$
.

- (v) Prove that $GL(2n, \mathbb{Z})$ does not act properly discontinuous on $GL(n, \mathbb{C}) \setminus GL(2n, \mathbb{R})$ for $n \geq 2$, so $\mathcal{M}_{\mathbb{T}^n}$ is not Hausdorff.
- (vi) For n = 1, prove that

$$\mathrm{GL}(1,\mathbb{C})\setminus\mathrm{GL}(2,\mathbb{R})\cong\mathbb{H}^2\sqcup\mathbb{H}^2$$
,

Where $\mathbb{H}^2 = \{x + iy \in \mathbb{C} | y > 0\}$ is the hyperbolic plane, and the two copies are distinguished by orientation.

- (vii) Give a geometric description of $\mathcal{M}_{\mathbb{T}^1}$.
- (viii) Show that $\mathcal{M}_{\mathbb{T}^1}$ is not compact. Can you find a natural compactification?
 - (ix) Show that $\mathcal{M}_{\mathbb{T}^1}$ is not a manifold, but an orbifold. Can you compute the stabiliser of the non-smooth points?

(continues on the next page)

Exercise 6 (Moduli space of principally polarised tori). From Exercise 6 Sheet 9, we know that a complex torus \mathbb{C}^n/Γ is projective iff ω restricts to a symplectic form $\Gamma \times \Gamma \to \mathbb{Z}$. Fix a symplectic structure ω (equivalently a hermitian metric) on \mathbb{C}^n .

(i) Prove that a projective torus of dimension n is determined by a symplectic map $\mathbb{Z}^{2n} \to \mathbb{C}^n \cong \mathbb{R}^{2n}$, and thus, can be identified with an element of $\operatorname{Sp}(2n,\mathbb{R})$.

We define \mathcal{M}_{Ab}^n the moduli of principally polarised n-dimensional tori to be the collection of tori given by the construction in (i), modulo automorphism.

- (ii) Show the actions of U(n) and $\operatorname{Sp}(2n,\mathbb{Z})$ on $\operatorname{Sp}(2n,\mathbb{R})$ induce the trivial action on \mathcal{M}_{Ab}^n .
- (iii) Prove that \mathcal{M}_{Ab}^n is isomorphic to the bi-quotient

$$U(n) \setminus \operatorname{Sp}(2n, \mathbb{R}) / \operatorname{Sp}(2n, \mathbb{Z})$$
.

- (iv) Check that, for n = 1, we have $\mathcal{M}_{Ab}^1 \cong \mathcal{M}_{\mathbb{T}^1}$.
- (v) Prove that $\operatorname{Sp}(2n,\mathbb{Z})$ acts properly discontinuously on $\operatorname{U}(n) \setminus \operatorname{Sp}(2n,\mathbb{R})$. In particular, the moduli space \mathcal{M}_{Ab}^n is Hausdorff for all $n \geq 2$.